

- Short Circuit Current Limit Adjustable
- Overload Breaking Current Adjustable
- I2C Communication
- Discrete Operation Option

Electrical Specifications

DC Input

Input: 0 to 50 V_{DC}

Vcc: 3 to 5.5 Vpc

Vcc Supply Current: 25mA Typical

Control

• I2C Communication see • Open drain fault discrete signal • On/Off discrete signal

Note 1: Tested with full system

DC Output

• Input-to-Output impedance: Less than 2.5 m Ω @ 25 $^{\circ}C$

• Max load capacitance per channel:

Complies with MIL-STD-461F

(50μH LISN): RE102, CE102,

CS101¹, CE101¹, CS114¹,

CS115¹, CS116¹, RS103¹

<u>EMC</u>

• Overload Breaking Current Adjustable from 2A to 30 A according to I2T curve.

• Short Circuit Current Limit Adjustable from 10 A to 125 A according to SCL curve.

Environmental 1

Design to Meet MIL-STD-810G

Temperature

Operating: –55°C to +125°C at ambient

Storage: -55°C to +125°C

Altitude

Method 500.5, Procedure I & II Storage/Air Transport: 40 kft Operation/Air carriage: 70 kft

Does not support fungus growth, in accordance with the guidelines of MIL-STD-454, Requirement 4.

Method 507.5, Up to 95% RH

Salt Fog:

Method 509.5

Shock1 Method 516.6

40g, 11msec saw-tooth (all

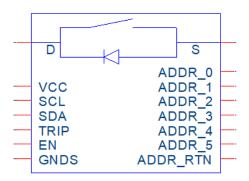
directions)

Vibration¹

Figure 514.6E-1. General minimum integrity exposure. (1 hour per axis.)

Note 1: Tested with full system

Reliability


2,529,861 hours, calculated IAW MIL-HDBK-217F Notice 2 at +85°C, Ground fixed conditions.

Markets & Applications

Functions and Signals

Signal Name	M9526-100 Pinout	Description		
VCC	1	Control supply voltage with respect to GNDS.		
SDA	2	I2C bus Data.		
SCL	3	I2C bus Clock.		
TRIP	4	Open drain fault discrete signal. See Figure 1.		
EN	5	The Enable signal is used to turn the SWITCH BRICK ON and OFF.		
ADDR_0	6	Used for Slave Device Addressing		
ADDR_1	7	Used for Slave Device Addressing		
ADDR_2	8	Used for Slave Device Addressing.		
ADDR_3	9	Used for Slave Device Addressing.		
ADDR_4	10	Used for Slave Device Addressing		
ADDR_5	11	Used for Slave Device Addressing.		
ADD_RTN	12	Used for Slave Device Addressing.		
GNDS	14	ground for I2C, TRIP, EN and VCC.		
D	15	Drain for Power Path. For positive voltage switch it will be the input voltage side connection.		
S	16	Source for Power Path. For positive voltage switch it will be the load side connection.		

Top View:

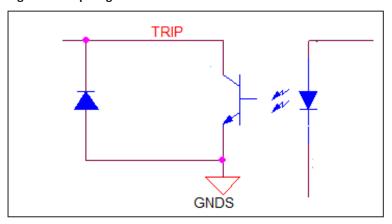



Figure 1 – Trip stage

1. Typical Tests Results

2. Typical Characteristics

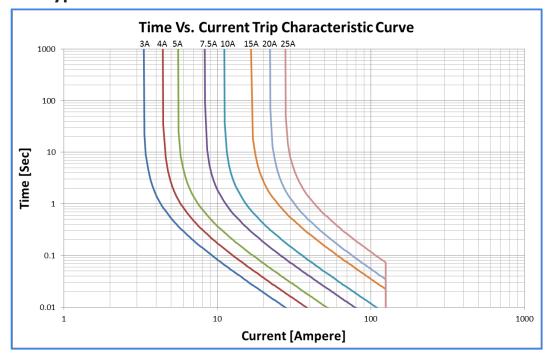


Figure 2 - Time vs. Current Trip

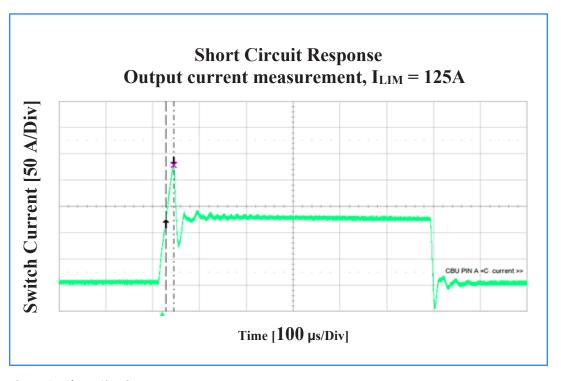


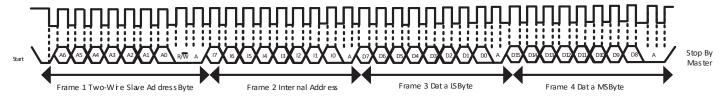
Figure 3 - Short Circuit Response

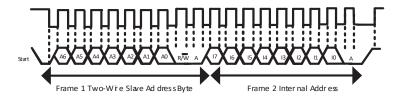
1. I2C Protocol

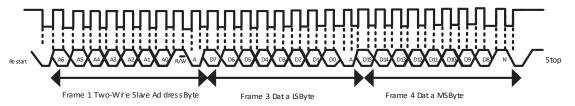
Slave Address:

For $0 \le ADDR \le 7 \rightarrow ADDR + 0x70$

For other Address = ADDR

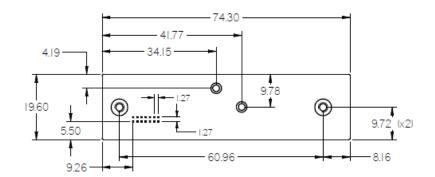

Slave will be read as a memory device with one byte of internal address.

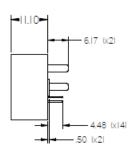

Byte order shall be little endian. For example, 01h address will be the LSB of VOUT1.


Internal Address	Name	Function	R/W	Number of bytes	notes
00h	STAT	Status Register	R	1	STAT[0] = Reset Flag (RST) STAT[1] = Switch State ('1' = ON) STAT[2] = Trip Status ('1' = Fault) STAT[3] = Short Status ('1' = Trip from short circuit) STAT[4:7] = Reserved
01h	OUTCURR	Load Current Measurement	R	2	LSB = 62.5mA
03h	VOLTD	Voltage Drop Measurement	R	2	LSB = 62.5mV
05h	TEMP	Temperature Measurement	R	2	LSB = 0.0625°C
07h	12TACC	I ² t Status	R	3	I ² t accumulator with respect to I2T_LIM

Oah	ĆTRL	Control Register	RW	1	CTRL[0] = Switch Enable ('1' = En) CTRL[1] = Trip Reset ('1' = Reset) CTRL[2] = Reset Flag (RST, Reset value = '1') CTRL[4:7] = Battle Mode (0xD = Battle Enable)
0bh	OLCL	Overload Current Limit	RW	2	LSB = 62.5mA
Odh	I2T_LIM	Maximal I ² t Setting	WR	3	Thermal Constant(TC) is the trip time for twice of the overload current setting. I2TACC can be set by following formula: I2TACC = (IOVERLOAD*16) ² *TC*16 TC [s], IOVERLOAD [A]
10h	SCCL	Short Circuit Current Limit	RW	2	LSB = 62.5mA

Timing Diagram





A[0:6] – Address D[0:15] – Data I[0:7] – Internal Address A – ACK N – NACK

Outline Drawing

Notes

- Dimensions are in mm 1.
- Weight: 32g
- 3D model available

Standard Configurations

	Input	Output		
Part Number	Input Voltage range	V _{cc}	Voltage	Current
PSD28V1CEC	0 to 50 V _{DC}	3 to 5.5 V _{DC}	Following Input	Adjustable

Note: Specifications are subject to change without prior notice by the manufacturer.

